- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Bin Sikandar, Usama (2)
-
Sponberg, Simon (2)
-
Aiello, Brett R. (1)
-
Alvey, Alexis J. (1)
-
Barber, Jesse R. (1)
-
Bhinderwala, Burhanuddin (1)
-
Ferrari, Silvia (1)
-
Hamilton, Chris A. (1)
-
Kawahara, Akito Y. (1)
-
Kimball, Katalina C. (1)
-
Putney, Joy (1)
-
Tan, Milton (1)
-
Yang, Hengye (1)
-
Zhu, Pingping (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A Relative Spike-Timing Approach to Kernel-Based Decoding Demonstrated for Insect Flight ExperimentsSpike train decoding is considered one of the grand challenges in reverse-engineering neural control systems as well as in the development of neuromorphic controllers. This paper presents a novel relative-time kernel design that accounts for not only individual spike train patterns, but also the relative spike timing between neuron pairs in the population. The new relative-time-kernel-based spike train decoding method proposed in this paper allows us to map the spike trains of a population of neurons onto a lower-dimensional manifold, in which continuous-time trajectories live. The effectiveness of our novel approach is demonstrated by comparing it with existing kernel-based and rate-based decoders, including the traditional reproducing kernel Hilbert space framework. In this paper, we use the data collected in hawk moth flower tracking experiments to test the importance of relative spike timing information for neural control, and focus on the problem of uncovering the mapping from the spike trains of ten primary flight muscles to the resulting forces and torques on the moth body. We show that our new relative-time-kernel-based decoder improves the prediction of the resulting forces and torques by up to 52.1 %. Our proposed relative-time-kernel-based decoder may be used to reverse-engineer neural control systems more accurately by incorporating precise relative spike timing information in spike trains.more » « less
-
Aiello, Brett R.; Tan, Milton; Bin Sikandar, Usama; Alvey, Alexis J.; Bhinderwala, Burhanuddin; Kimball, Katalina C.; Barber, Jesse R.; Hamilton, Chris A.; Kawahara, Akito Y.; Sponberg, Simon (, Proceedings of the Royal Society B: Biological Sciences)null (Ed.)The evolution of flapping flight is linked to the prolific success of insects. Across Insecta, wing morphology diversified, strongly impacting aerodynamic performance. In the presence of ecological opportunity, discrete adaptive shifts and early bursts are two processes hypothesized to give rise to exceptional morphological diversification. Here, we use the sister-families Sphingidae and Saturniidae to answer how the evolution of aerodynamically important traits is linked to clade divergence and through what process(es) these traits evolve. Many agile Sphingidae evolved hover feeding behaviours, while adult Saturniidae lack functional mouth parts and rely on a fixed energy budget as adults. We find that Sphingidae underwent an adaptive shift in wing morphology coincident with life history and behaviour divergence, evolving small high aspect ratio wings advantageous for power reduction that can be moved at high frequencies, beneficial for flight control. By contrast, Saturniidae, which do not feed as adults, evolved large wings and morphology which surprisingly does not reduce aerodynamic power, but could contribute to their erratic flight behaviour, aiding in predator avoidance. We suggest that after the evolution of flapping flight, diversification of wing morphology can be potentiated by adaptative shifts, shaping the diversity of wing morphology across insects.more » « less
An official website of the United States government
